91麻豆五十路|果冻传媒一区|91制片厂收费吗|国产尤物av午夜精品一区二区|科普一下天美传媒|精品亚洲成a人在线|麻豆传媒映画男优一阿伟|国产精品熟女91九色|麻豆传媒映画映百科全书|自拍区偷拍亚洲最新,精东影业精一禾传媒,麻豆映画传媒安卓下载,糖心系列唐伯虎vlog已更新

科學(xué)研究

打造高水平科技創(chuàng)新平臺(tái)和一流科研團(tuán)隊(duì)!

MENU

學(xué)術(shù)活動(dòng)

“數(shù)通古今,學(xué)貫中外”學(xué)術(shù)講座第七十期預(yù)告【韓曉龍】

編輯: 數(shù)學(xué)學(xué)院 董學(xué)敏 時(shí)間:2014-06-12

各位老師:

6月16日(周一) 下午 2:00-3:00, 研究生樓104有來自澳大利亞的韓曉龍老師做報(bào)告,,敬請(qǐng)留意,!

 報(bào)告人: 韓曉龍, 澳大利亞國(guó)立大學(xué)

 Title: Spherical harmonics with maximal norm growth

Abstract: Sogge’s Lp estimates bound the Lp norms of normalized eigenfunctions on smooth and compact manifolds. They are also sharp on the sphere, with maximizers as Gaussian beams for small p and zonal harmonics for large p. In this talk, we investigate the density of these maximizers in the orthonormal eigenfunction basis, and construct a positive density subsequence of orthonormal spherical harmonics which achieves the maximal Lp norm growth for all small p. This gives an example of a Riemannian surface supporting such subsequence of eigenfunctions. Furthermore, we provide an explicit lower bound on the density in this example.
 
祝好!