打造高水平科技創(chuàng)新平臺和一流科研團隊,!
Many scientific systems of interests can be modeled as a network. On
the other hand, the best way to understand the specialty and the
importance of an individual is placing it into a proper network. A network
is represented as an (un)directed graph, where nodes or vertices stand for individuals while edges or arcs for the relationship between pairs of nodes.
Static network analysis is to identify important elements (node or edge) in
networks, based on only the topology of networks. To measure the importance
of an element (node or edge), various centrality metrics have been proposed
in past years. In this talk, after reviewing several commonly used centrality
metrics I will present some applications of static network analysis in identification
of essential proteins, drug targets and disease genes from biomolecular networks.
主講人簡介:
吳方向教授于1998年獲西北工業(yè)大學(xué)控制理論與控制工程專業(yè)博士學(xué)位,2004年獲加拿大莎省大學(xué)(University of Saskatchewan)生物醫(yī)學(xué)工程專業(yè)博士學(xué)位,;現(xiàn)為莎省大學(xué)全職教授,,生物醫(yī)學(xué)工程研究生院院長;擔任7個國際雜志的編委會成員,,IEEE Fellow,,加拿大注冊專業(yè)工程師,;主要研究方向為:系統(tǒng)生物學(xué)、基因組和蛋白質(zhì)組數(shù)據(jù)分析,、生物系統(tǒng)識別與參數(shù)估計,、蛋白質(zhì)相互作用網(wǎng)、以及控制理論在生物系統(tǒng)中的應(yīng)用等,;承擔多項加拿大國家級科研項目,,在國際知名期刊Proteomics,BMC Systems Biology,,Briefings in Bioinformatics和Scientific Report等以及各種會議上共發(fā)表論文200余篇,。
歡迎廣大師生積極參與,!