91麻豆五十路|果冻传媒一区|91制片厂收费吗|国产尤物av午夜精品一区二区|科普一下天美传媒|精品亚洲成a人在线|麻豆传媒映画男优一阿伟|国产精品熟女91九色|麻豆传媒映画映百科全书|自拍区偷拍亚洲最新,精东影业精一禾传媒,麻豆映画传媒安卓下载,糖心系列唐伯虎vlog已更新

科學研究

打造高水平科技創(chuàng)新平臺和一流科研團隊!

MENU

學術活動

材料學院7月3日學術講座預告

供稿: 韓登寶 編輯: 材料學院 趙汗青 時間:2015-07-02

報告題目:Stretchable Polymer Electronics
時  間:2015年7月3日下午2:30
地  點:5號教學樓502-1

報告人簡介:
Qibing Pei is Professor of Materials Science and Engineering at UCLA. He specializes in synthetic polymers and composites for electronic, electromechanical, and photonic applications, with over 140 peer-reviewed journal publications and 40 awarded US patents. His current research activities include conjugated polymer synthesis, flexible and stretchable polymer electronics, nanostructured composites, and soft actuators. He received a B.S. degree in chemistry from Nanjing University, China, and a PhD in polymer science from the Institute of Chemistry, Chinese Academy of Science, Beijing. He was a postdoctoral scientist in Linköping University, Sweden, senior chemist at UNIAX Corporation (now DuPont Display), Santa Barbara, California, and senior research engineer at SRI International, Menlo Park, California. He has been on the UCLA faculty since 2004. He is a Fellow of the SPIE, member of the American Chemical Society, Materials Research Society, Associate Editor of Smart Materials and Structures, Soft Robotics, and serves on the Advisory Board of Advanced Electronic Materials and International Journal of Smart and Nano Materials.

報告摘要:
Intrinsically stretchable electronics entails the electrode, semiconductor, and dielectric materials all being deformable, and that a suitable deposition, patterning, and overlaying protocols are developed for the soft materials. I will present the development of a new transparent conductor with high surface conductivity and low surface roughness. The mechanical properties of the transparent electrode are determined by the polymer substrate employed, and demonstrated properties include flexibility, shape memory, self-healing, and rubbery deformation. The new electrode has been used to replace ITO/glass in fabricating organic light emitting diodes with significantly enhanced luminous efficiency. A series of highly stretchable electronic devices will also be presented.