數(shù)學(xué)與統(tǒng)計(jì)學(xué)院"21世紀(jì)學(xué)科前沿"系列學(xué)術(shù)報(bào)告預(yù)告
Lower Bounds for the First Eigenvalue of the Vibrating Clamped Plate under Compression
報(bào)告題目: Lower Bounds for the First Eigenvalue of the Vibrating Clamped Plate under Compression
報(bào)告時(shí)間: 2015年 8月19日(周三)上午 10:00-11:00
報(bào)告地點(diǎn): 中關(guān)村校區(qū)中心教學(xué)樓843(或844)教室
Abstract: We give a sharp lower bound to the fundamental frequency of a clamped vibrating plate under compress in the context of plates of different shapes of fixed area. Mathematically, the problem is that of bounding the first eigenvalue of a certain 4th-order partial differential operator with leading term the bi-Laplacian from below by a positive constant over the square of the domain's area. We give a Rayleigh-Faber-Krahn-type result for this problem. (This is joint work with R. Benguria and R. Mahadevan.)
報(bào)告人簡(jiǎn)介: Professor Mark S. Ashbaugh 在Laplace的特征值及等周不等式方面做出了杰出的工作,, 曾解決了著名的PPW猜想、二維及三維的Rayleigh猜想等,。在《Annals of Mathematics》,、《Bulletin of American mathematical Society》、《Duke Math. J.》,、《Advances in Mathematics》,、《Comm. Math. Phys.》等國(guó)際一流雜志上發(fā)表數(shù)十篇論文。