91麻豆五十路|果冻传媒一区|91制片厂收费吗|国产尤物av午夜精品一区二区|科普一下天美传媒|精品亚洲成a人在线|麻豆传媒映画男优一阿伟|国产精品熟女91九色|麻豆传媒映画映百科全书|自拍区偷拍亚洲最新,精东影业精一禾传媒,麻豆映画传媒安卓下载,糖心系列唐伯虎vlog已更新

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

【百家大講堂】第89期:化學(xué)-力學(xué):固體力學(xué)和化學(xué)交叉學(xué)科中的挑戰(zhàn)

來(lái)源:   發(fā)布日期:2018-08-24

  講座題目:化學(xué)-力學(xué):固體力學(xué)和化學(xué)交叉學(xué)科中的挑戰(zhàn)

                            Chemo-Mechanics: Challenges at the Intersection of Solid Mechanics and Chemistry

  主 講 人:Robert M. McMeeking

         美國(guó)國(guó)家工程院院士,美國(guó)加州大學(xué)圣芭芭拉分校材料與機(jī)械工程系特聘教授,德國(guó)薩爾布呂萊布尼茨新材料研究所外籍研究員

  主 持 人:方岱寧院士

  時(shí)   間:2018年8月31日 8:30

  地   點(diǎn):中關(guān)村校區(qū) 7號(hào)樓報(bào)告廳

  主辦單位:研究生院,、先進(jìn)結(jié)構(gòu)技術(shù)研究院

  報(bào)名方式:掃描下方二維碼

 【主講人簡(jiǎn)介】

 

  Robert M. McMeeking,,加州大學(xué)圣芭芭拉分校材料與機(jī)械工程系特聘教授,美國(guó)國(guó)家工程院院士,,德國(guó)薩爾布呂萊布尼茨新材料研究所外籍研究員。1972年在蘇格蘭格拉斯哥大學(xué)以一級(jí)榮譽(yù)獲得理科學(xué)士學(xué)位,并于1976年在布朗大學(xué)James R. Rice教授指導(dǎo)下獲得固體力學(xué)博士學(xué)位,。他在斯坦福大學(xué)任職2年,擔(dān)任代理助理教授,,隨后擔(dān)任伊利諾伊香檳分校理論與應(yīng)用力學(xué)系助理教授和副教授,。1985年加入加州大學(xué)圣芭芭拉分校(UCSB)擔(dān)任材料與機(jī)械工程系教授,并于1992-1995年以及1999-2003年擔(dān)任機(jī)械工程系主任,。McMeeking發(fā)表了250多篇科學(xué)論文,,涉及塑性,斷裂力學(xué),,計(jì)算方法,,冰川學(xué),,堅(jiān)韌陶瓷,復(fù)合材料,,材料加工,,粉末固結(jié)和??燒結(jié),鐵電體,,微觀結(jié)構(gòu)演變,,納米摩擦學(xué),驅(qū)動(dòng)結(jié)構(gòu),,結(jié)構(gòu)爆炸和碎片保護(hù),,水下爆炸沖擊流體結(jié)構(gòu)相互作用,細(xì)胞及其細(xì)胞骨架的力學(xué),,鋰離子電池和燃料電池,。 1998年,當(dāng)選為美國(guó)機(jī)械工程學(xué)會(huì)會(huì)員,,并于2002年被科學(xué)信息研究所評(píng)為材料科學(xué)與工程領(lǐng)域的高度引用研究員,。2005年當(dāng)選美國(guó)國(guó)家工程院院士,并于2006年和2013年兩次獲得洪堡高級(jí)科學(xué)家獎(jiǎng),,2007年獲得布朗大學(xué)布朗工程校友獎(jiǎng),。2014年當(dāng)選為英國(guó)皇家學(xué)院院士和愛(ài)丁堡皇家學(xué)會(huì)會(huì)員,并獲得2014年工程科學(xué)學(xué)會(huì)William Prager獎(jiǎng)?wù)潞兔绹?guó)機(jī)械工程師學(xué)會(huì)2014年Timoshenko獎(jiǎng)?wù)隆?/span>

    Robert M. McMeeking is Distinguished Professor of Mechanical Engineering at the University of California, Santa Barbara, and is an External Member of the Leibniz Institute for New Materials, Saarbruecken, Germany.  He earned a B.Sc. (with 1st Class Honours) at the University of Glasgow, Scotland in 1972, and in 1976 he completed his Ph.D. in solid mechanics at Brown University under the supervision of Professor James R. Rice.  He spent 2 years at Stanford University as Acting Assistant Professor, and then was appointed Assistant Professor, and subsequently Associate Professor, at the University of Illinois at Urbana-Champaign, in the Theoretical and Applied Mechanics Department.  McMeeking moved to the University of California, Santa Barbara (UCSB) in 1985 as Professor of Materials and of Mechanical Engineering.  He was Chair of the Department of Mechanical Engineering 1992-1995 and again during 1999-2003.  He has published over 250 scientific papers on such subjects as plasticity, fracture mechanics, computational methods, glaciology, tough ceramics, composite materials, materials processing, powder consolidation and sintering, ferroelectrics, microstructural evolution, nanotribology, actuating structures, blast and fragment protection of structures, fluid structure interactions arising from underwater blast waves, the mechanics of the cell and its cytoskeleton, lithium-ion batteries and fuel-cells.  In 1998 he was advanced to Fellow grade in the American Society of Mechanical Engineers and in 2002 was recognized by the Institute for Scientific Information as a Highly Cited Researcher in the fields of Materials Science and Engineering.  McMeeking was elected to the U.S. National Academy of Engineering in 2005, and held a Humboldt Award for Senior Scientists in 2006 and again in 2013.  He was given the Brown Engineering Alumni Medal by Brown University in 2007, and elected Fellow of the U.K. Royal Academy of Engineering in 2012.  In 2014 he was also elected Fellow of the Royal Society of Edinburgh and received both the 2014 William Prager Medal of the Society of Engineering Science and the 2014 Timoshenko Medal of the American Society of Mechanical Engineers.  McMeeking was Editor of the Journal of Applied Mechanics for the term 2002-2012. 

【講座摘要】

      化學(xué)-力學(xué)是一個(gè)古老的工程學(xué)科,,至少可以追溯到唐代中國(guó)火藥的發(fā)明,。蒸汽機(jī)和內(nèi)燃機(jī)的出現(xiàn)更增加了該主題的工程重要性,當(dāng)然,,材料的機(jī)械性質(zhì)從根本上來(lái)說(shuō)也是它們的化學(xué)問(wèn)題,。但隨著相關(guān)領(lǐng)域的進(jìn)一步發(fā)展,又出現(xiàn)了許多新的問(wèn)題,,且在這些問(wèn)題中固體力學(xué)和化學(xué)的交叉起著至關(guān)重要的作用,。因而,必須要將固體力學(xué)與化學(xué)相關(guān)的重要性引入到研究問(wèn)題中,。要做到這一點(diǎn),,必須考慮系統(tǒng)的能量構(gòu)成,以及不同類型的能量在熱力學(xué)中可以發(fā)揮的相對(duì)重要的作用,。例如,,汽油的比能量遠(yuǎn)大于通常與材料的彈性變形相關(guān)的應(yīng)變能密度。因此,,固體力學(xué)和化學(xué)發(fā)揮同等重要作用的主題有些特殊,,人們必須將注意力集中在這些特殊領(lǐng)域,以應(yīng)對(duì)固體力學(xué)與化學(xué)交叉的挑戰(zhàn)。本次報(bào)告將討論從各種相關(guān)領(lǐng)域抽取出的化學(xué)-力學(xué)交叉問(wèn)題,。一個(gè)問(wèn)題是在氧化環(huán)境中的中間溫度下SiC/SiC復(fù)合材料的應(yīng)力破裂問(wèn)題,,這是一系列內(nèi)部化學(xué)和熱機(jī)械過(guò)程導(dǎo)致過(guò)早的局部纖維斷裂的結(jié)果。通過(guò)建立的模型首次解釋了為什么這種失效機(jī)理在中等溫度下普遍存在而在低溫和高溫下不存在,。固體力學(xué)在化學(xué)中發(fā)揮重要作用的另一個(gè)主題是鋰離子電池,,其中力學(xué)作用會(huì)影響離子傳輸、氧化還原反應(yīng)等電化學(xué)過(guò)程的速率,。在生物細(xì)胞力學(xué)中,,同樣存在許多應(yīng)力和力影響細(xì)胞生物化學(xué),細(xì)胞信號(hào)傳導(dǎo)和細(xì)胞對(duì)環(huán)境響應(yīng)行為的現(xiàn)象,。此外,,在凝膠和彈性體中,化學(xué)和固體力學(xué)之間的相互作用會(huì)影響材料的狀態(tài)及其力學(xué)性質(zhì),。

   Chemo-Mechanics is an old subject in engineering, dating back at least as far as the invention of gunpowder in China during the Tang dynasty.  Steam and internal combustion engines increased the engineering importance of the subject, and, of course, the nature of the mechanical properties of materials is fundamentally an issue of their chemistry.  But the area has grown, and today there are a large number of additional topics where the intersection of solid mechanics and chemistry is of importance.  Nevertheless, the importance of solid mechanics in relation to chemistry must be put in context.  To do this, one must consider the energy content of systems, and the relative importance of the roles that different types of energy can play in thermodynamics.  For example, the specific energy content of gasoline is vastly greater than the strain energy density typically associated with elastic deformation of materials.  Therefore, the topics in which both solid mechanics and chemistry play equally important roles are somewhat special, and one has to focus one’s attention on these special areas to address the challenges that lie at the intersection of solid mechanics and chemistry.

 This talk will address a few such areas drawn from a variety of subjects.  One area is stress rupture of SiC/SiC composites at intermediate temperatures in oxidizing environments, which is the result of a series of internal chemical and thermomechanical processes that lead to premature, localized fiber fracture.  The model developed has, for the first time, explained why this failure mechanism is prevalent at intermediate temperatures but not at low and high temperatures.  Another topic where solid mechanics plays a significant role in the chemistry is the subject of lithium-ion batteries, where mechanical work can bias the rates of electro-chemical processes that are involved in ion transport and redox reactions.  In biological cell mechanics there are many phenomena where mechanical stress and forces affect the cell biochemistry, cell signaling and cell behavior in response to its environment.  Additionally, in gels and elastomers interactions between chemistry and solid mechanics influence the state of the material and its mechanical properties.