91麻豆五十路|果冻传媒一区|91制片厂收费吗|国产尤物av午夜精品一区二区|科普一下天美传媒|精品亚洲成a人在线|麻豆传媒映画男优一阿伟|国产精品熟女91九色|麻豆传媒映画映百科全书|自拍区偷拍亚洲最新,精东影业精一禾传媒,麻豆映画传媒安卓下载,糖心系列唐伯虎vlog已更新

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

【百家大講堂】第221期:面向可預(yù)測化的膠體金屬納米晶合成

來源:   發(fā)布日期:2019-07-04
【百家大講堂】第221期:面向可預(yù)測化的膠體金屬納米晶合成 
  講座題目:面向可預(yù)測化的膠體金屬納米晶合成 
  報  告 人:夏幼南
  時    間:2019年7月15日上午10:00-12:00
  地    點:中關(guān)村校區(qū)研究生樓101報告廳
  主辦單位:研究生院、材料學(xué)院
  報名方式:登錄北京理工大學(xué)微信企業(yè)號---第二課堂---課程報名中選擇“【百家大講堂】第221期:面向可預(yù)測化的膠體金屬納米晶合成  ”
 
【主講人簡介】
夏幼南是Brock Family主席和喬治亞理工學(xué)院的喬治亞研究聯(lián)盟(GRA)納米醫(yī)學(xué)杰出學(xué)者,。1987年獲中國科學(xué)技術(shù)大學(xué)近代化學(xué)系學(xué)士學(xué)位,,1993年獲賓夕法尼亞大學(xué)無機化學(xué)碩士學(xué)位,1996年獲哈佛大學(xué)化學(xué)與化學(xué)生物系博士學(xué)位,,師從George M. Whitesides教授,。他的課題組發(fā)明了大量具有可控性能的納米材料,這些納米材料在等離子體,、電子,、光子學(xué)、光伏,、顯示,、催化、燃料電池,、納米醫(yī)學(xué)和再生醫(yī)學(xué)等領(lǐng)域得到了廣泛應(yīng)用,。例如,他的銀納米線技術(shù)已經(jīng)商業(yè)化,,用于制造柔性,、透明和導(dǎo)電涂層,用于觸摸屏,、柔性電子和光伏等應(yīng)用,。他的課題組發(fā)明的金納米材料使癌癥治療成為可能。夏幼南在同行評議的期刊上共發(fā)表了760多篇出版物,,總引用量超過140000次,,H指數(shù)為189。根據(jù)每期出版物的引用次數(shù),,他被評為十大化學(xué)家和材料科學(xué)家,。他曾獲得多項著名獎項,包括材料研究學(xué)會(MRS)獎?wù)拢?017年),、美國化學(xué)學(xué)會(ACS)材料化學(xué)獎(2013年),、NIH院長先鋒獎(2006年)、斯隆研究獎和帕克基金會科學(xué)工程研究獎(2000年),、美國國家科學(xué)基金會(NSF)杰出青年教授獎(2000年),。有關(guān)更多信息,,請訪問http://www.nanocage.com。
Younan Xia is the Brock Family Chair and Georgia Research Alliance (GRA) Eminent Scholar in Nanomedicine at the Georgia Institute of Technology. He received a B.S. degree in chemical physics from the University of Science and Technology of China in 1987, a M.S. degree in inorganic chemistry from University of Pennsylvania (with Professor Alan G. MacDiarmid) in 1993, and a Ph.D. degree in physical chemistry from Harvard University (with Professor George M. Whitesides) in 1996. His group has invented a myriad of nanomaterials with controlled properties and these nanomaterials have found widespread use in applications related to plasmonics, electronics, photonics, photovoltaics, display, catalysis, fuel cells, nanomedicine, and regenerative medicine. As an example, his technology on silver nanowires has been commercialized for the manufacturing of flexible, transparent, and conductive coatings for applications such as touchscreen, flexible electronics, and photovoltaics. The gold nanocages invented by his group are enabling cancer theranostics. Xia has co-authored more than 760 publications in peer-reviewed journals, together with a total citation of more than 140,000 and an h-index of 189. He has been named a Top 10 Chemist and Materials Scientist based on the number of citation per publication. He has received a number of prestigious awards, including Materials Research Society (MRS) Metal (2017), American Chemical Society (ACS) National Award in the Chemistry of Materials (2013), NIH Director's Pioneer Award (2006), David and Lucile Packard Fellow in Science and Engineering (2000), NSF CAREER (2000). More information can be found at http://www.nanocages.com. 
 
 
【講座信息】
近年的研究表明,,還原反應(yīng)的動力學(xué)在金屬納米晶體膠體合成的產(chǎn)物中起著重要的作用,。還原反應(yīng)動力學(xué)不僅控制了納米晶的內(nèi)部缺陷結(jié)構(gòu),例如單晶程度,,孿晶結(jié)構(gòu)和堆垛層錯,,并且在種子的成核過程還決定了生長模式(對稱或不對稱)與生長方式(島式生長或?qū)邮缴L)。在這個報告中,,將首先簡要介紹本課題組近期在成功量化反應(yīng)動力學(xué)參數(shù)方面的進(jìn)展,,如速率常數(shù)和活化能等。并且進(jìn)一步介紹如何利用控制反應(yīng)動力學(xué)的方法,,實現(xiàn)對金屬納米晶的成核和生長過程的控制,,最終實現(xiàn)可預(yù)測和可量化的膠體納米晶合成,及其定量控制,。定量測量和控制使我們能夠精確地,、可重現(xiàn)地調(diào)整膠體金屬納米晶體的性質(zhì),使其廣泛應(yīng)用于催化,、光子學(xué),、電子學(xué)、能量轉(zhuǎn)換,、傳感,、成像和生物醫(yī)學(xué)等領(lǐng)域。
Recent studies suggest that reduction kinetics play an important role in determining the outcome of a colloidal synthesis of metal nanocrystals. The reduction rate not only controls the internal defect structure, including single-crystal, singly-twinned, multiply-twinned, and stacking-fault lined, of a seed formed in the nucleation step but also dictates the growth pattern (symmetric vs. asymmetric) or mode (island vs. layer-by-layer) of the seed in the following steps. In this talk, I will start with a brief introduction to our recent success in quantifying the kinetic parameters, including the rate constants and activation energies, for a number of systems and then illustrate how this knowledge can be applied to deepen our understanding of the nucleation and growth processes, moving towards the ultimate goal of achieving predictable and deterministic synthesis, together with an easy and quantitative control. The quantitative measure and control allow us to precisely and reproducibly tailor the properties of colloidal metal nanocrystals for a broad range of applications in catalysis, photonics, electronics, energy conversion, sensing, imaging, and biomedicine.