91麻豆五十路|果冻传媒一区|91制片厂收费吗|国产尤物av午夜精品一区二区|科普一下天美传媒|精品亚洲成a人在线|麻豆传媒映画男优一阿伟|国产精品熟女91九色|麻豆传媒映画映百科全书|自拍区偷拍亚洲最新,精东影业精一禾传媒,麻豆映画传媒安卓下载,糖心系列唐伯虎vlog已更新

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

【百家大講堂】第288期: 光譜解混與端元可變性研究

來(lái)源:   發(fā)布日期:2019-11-26
【百家大講堂】第288期: 光譜解混與端元可變性研究 
  講座題目:光譜解混與端元可變性研究 
  報(bào)  告 人:Jocelyn Chanussot 
  時(shí)    間:2019年11月29日 下午15:00-17:00
  地    點(diǎn):中關(guān)村校區(qū)10號(hào)教學(xué)樓205
  主辦單位:研究生院,、 信息與電子學(xué)院
  報(bào)名方式:登錄北京理工大學(xué)微信企業(yè)號(hào)---第二課堂---課程報(bào)名中選擇“【百家大講堂】第288期:光譜解混與端元可變性研究  ”
 
【主講人簡(jiǎn)介】
 Jocelyn Chanussot,,法國(guó)格勒諾布爾理工學(xué)院教授。 長(zhǎng)期從事于圖像分析,,數(shù)據(jù)融合,,機(jī)器學(xué)習(xí)以及人工智能在遙感領(lǐng)域應(yīng)用等研究?,F(xiàn)任IEEE地球科學(xué)與遙感學(xué)會(huì)副主席,負(fù)責(zé)協(xié)會(huì)會(huì)議組織相關(guān)工作,。擔(dān)任IEEE T-GRS雜志與IEEE T-IP雜志副主編,,從2011年到2015年,曾任 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 雜志主編,。 發(fā)表國(guó)際期刊論文160余篇,, 多次獲得相關(guān)國(guó)際學(xué)術(shù)獎(jiǎng)勵(lì),。 2012年當(dāng)選美國(guó)IEEE會(huì)士, 2018,、2019年兩次入選湯森路透社高被引科學(xué)家,。 
 Jocelyn Chanussot is currently a Professor of signal and image processing at the Grenoble Institute of Technology, France. His research interests include image analysis, data fusion, machine learning and artificial intelligence in remote sensing. Dr. Chanussot is the Vice President of the IEEE Geoscience and Remote Sensing Society, in charge of meetings and symposia. He is an Associate Editor of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING and the IEEE TRANSACTIONS ON IMAGE PROCESSING. He was the Editor-in-Chief of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING from 2011 to 2015. He is the co-author of over 165 papers in international journals and has received several scientific awards and recognitions.  He is a Fellow of the IEEE (2012) and a Highly Cited Researcher (Clarivate Analytics/Thomson Reuters, 2018, 2019).
 
【講座信息】
光譜解混用于復(fù)原圖像中物質(zhì)的純凈光譜,是高光譜成像中一項(xiàng)重要的逆問題,。線性解混模型通常應(yīng)用于現(xiàn)有光譜解混研究,,并假設(shè)物質(zhì)與光譜存在一一對(duì)應(yīng)關(guān)系。然而,,在實(shí)際應(yīng)用中,,此類假設(shè)會(huì)產(chǎn)生嚴(yán)重的光譜類間變異性問題。因此,,需要在光譜解混中允許光譜端元存在變化以達(dá)到更加魯棒的解混效果,。本次講座回顧現(xiàn)有針對(duì)端元變異問題的研究,并對(duì)其分類,,且在數(shù)據(jù)集進(jìn)行測(cè)試分析,,以驗(yàn)證端元變異問題對(duì)光譜解混的影響。此項(xiàng)工作由Lucas Drumetz在其博士期間研究完成,。
Spectral Unmixing is an inverse problem in hyperspectral imaging which aims at recovering the spectra of the pure constituents of an image (called endmembers), as well as at estimating the proportions of said materials in each pixel (called abundances). A linear mixing model is typically used for this purpose, but this approach implicitly assumes that one spectrum can completely characterize each material, while in practice they are always subject to intra-class variability. Taking this phenomenon into account within an image amounts to allowing the endmembers to vary on a per-pixel basis. In this talk, we review and categorize the recent methods addressing this endmember variability and compare their results on a real dataset, thus showing the benefits of incorporating it in the unmixing chain. The work was conducted by Lucas Drumetz during his PhD.